Low temperature aqueous alteration of basalt: Mineral assemblages of Deccan basalts and implications for Mars
نویسندگان
چکیده
[1] Al-rich phyllosilicates (kaolinite, montmorillonite) have been found in layers overlying Fe/Mg-smectites on Mars, and it has been suggested that this stratigraphy formed through in situ leaching at the surface, similar to terrestrial weathering profiles. We are investigating the remotely sensed signatures of this type of weathering using ten samples from a vertical section of altered Deccan basalts and four samples collected nearby as an analog for leaching resulting in Al-rich phyllosilicate over Fe/Mg-smectite stratigraphies. Samples were analyzed with reflectance spectroscopy from 0.28 to 25.0 mm, inductively coupled plasma atomic emission spectrometry for 10 major element concentrations (Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti), loss on ignition for volatiles, x-ray diffraction (XRD) for mineralogies, and Mössbauer spectroscopy for Fe redox state. Spectra of basalt samples were dominated by Fe crystal field transitions with weak alteration bands near 1.4 and/or 1.9 mm. Reststrahlen bands in mid-infrared showed the convolution of plagioclase and pyroxene features typical of basalts. Saprolite samples were incompletely leached, and their spectra were dominated by complex Aland Fe/Mg-bearing smectite clays and retained no original mafic signatures. XRD and Mössbauer detected pyroxene and plagioclase not visible by reflectance spectroscopy in some saprolite samples. Zeolites were present throughout the saprolite. The laterite was the most leached horizon, and all analyses showed kaolinite and iron oxide assemblages. This kaolinite and hematite association would be expected if kaolinite on Mars formed through leaching under conditions similar to those on Earth and has implications for abundant freshwater on the Martian surface.
منابع مشابه
Synthesis of a spinifex-textured basalt as an analog to Gusev crater basalts, Mars
Analyses by the Mars Exploration Rover (MER), Spirit, of Martian basalts from Gusev crater show that they are chemically very different from terrestrial basalts, being characterized in particular by high Mgand Fe-contents. To provide suitable analog basalts for the International Space Analogue Rockstore (ISAR), a collection of analog rocks and minerals for preparing in situ space missions, espe...
متن کاملTracking the weathering of basalts on Mars using lithium isotope fractionation models
Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt-forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium-7Li and 6Li-have a large relative mass difference (...
متن کاملGeochemistry of metapelitic rocks from the Garmichay Area, East Azerbaijan, NW Iran; protolith nature and whole rock control on metamorphic mineral assemblages
The protoliths of metamorphosed argillaceous rocks from the Garmichay area in the East Azerbaijan province of NW Iran were clay-rich sediments of reworked nature, originating most likely from an andesite to andesite-basalt source and deposited in an active continental margin tectonic setting. The protoliths of the Garmichay metapelites experienced low to moderate chemical weathering. Andalusite...
متن کاملMineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars
[1] We used a suite of techniques, including those emulating compositional data sets obtained from Mars orbit and obtainable at the Mars surface, to examine aqueous alteration of basaltic rocks from Iceland as a mineralogic and geochemical analog for Noachian environments on Mars. A sample suite was collected for laboratory measurement of (1) whole-rock visible/near-infrared (VNIR) reflectance ...
متن کاملIron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover
[1] Spirit’s Mössbauer (MB) instrument determined the Fe mineralogy and oxidation state of 71 rocks and 43 soils during its exploration of the Gusev plains and the Columbia Hills (West Spur, Husband Hill, Haskin Ridge, northern Inner Basin, and Home Plate) on Mars. The plains are predominantly float rocks and soil derived from olivine basalts. Outcrops at West Spur and on Husband Hill have expe...
متن کامل